首页> 外文OA文献 >Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia
【2h】

Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia

机译:基因表达和DNA甲基化谱的整合改善了急性髓细胞白血病的分子亚型分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background Acute Myeloid Leukemia (AML) is characterized by various cytogenetic and molecular abnormalities. Detection of these abnormalities is important in the risk-classification of patients but requires laborious experimentation. Various studies showed that gene expression profiles (GEP), and the gene signatures derived from GEP, can be used for the prediction of subtypes in AML. Similarly, successful prediction was also achieved by exploiting DNA-methylation profiles (DMP). There are, however, no studies that compared classification accuracy and performance between GEP and DMP, neither are there studies that integrated both types of data to determine whether predictive power can be improved. Approach Here, we used 344 well-characterized AML samples for which both gene expression and DNA-methylation profiles are available. We created three different classification strategies including early, late and no integration of these datasets and used them to predict AML subtypes using a logistic regression model with Lasso regularization. Results We illustrate that both gene expression and DNA-methylation profiles contain distinct patterns that contribute to discriminating AML subtypes and that an integration strategy can exploit these patterns to achieve synergy between both data types. We show that concatenation of features from both data sets, i.e. early integration, improves the predictive power compared to classifiers trained on GEP or DMP alone. A more sophisticated strategy, i.e. the late integration strategy, employs a two-layer classifier which outperforms the early integration strategy. Conclusion We demonstrate that prediction of known cytogenetic and molecular abnormalities in AML can be further improved by integrating GEP and DMP profiles.
机译:背景急性髓细胞性白血病(AML)的特征是多种细胞遗传学和分子异常。这些异常的检测对于患者的风险分类很重要,但需要进行费力的实验。各种研究表明,基因表达谱(GEP)和源自GEP的基因签名可用于预测AML中的亚型。同样,通过利用DNA甲基化图谱(DMP)也可以实现成功的预测。但是,没有研究比较GEP和DMP之间的分类准确性和性能,也没有研究将两种类型的数据整合在一起以确定预测能力是否可以提高。方法在这里,我们使用了344个特征明确的AML样本,这些样本的基因表达和DNA甲基化谱图均可用。我们创建了三种不同的分类策略,包括这些数据集的早期,晚期和不整合,并使用它们通过具有Lasso正则化的逻辑回归模型来预测AML亚型。结果我们证明,基因表达和DNA甲基化图谱均包含有助于区分AML亚型的不同模式,并且整合策略可以利用这些模式来实现两种数据类型之间的协同作用。我们显示,与仅在GEP或DMP上训练的分类器相比,这两个数据集的特征串联(即早期集成)提高了预测能力。一种更复杂的策略,即后期集成策略,采用了两层分类器,其性能优于早期集成策略。结论我们证明,通过整合GEP和DMP谱可以进一步改善AML中已知的细胞遗传学和分子异常的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号